44 resultados para Plasmodium vivax rhoptry neck protein 1 (PvRON1)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed monthly doses of tafenoquine for preventing Plasmodium vivax and multidrug-resistant P. falciparum malaria. In a randomized, double-blind, placebo-controlled study, 205 Thai soldiers received either a loading dose of tafenoquine 400 mg ( base) daily for 3 days, followed by single monthly 400-mg doses (n = 104), or placebo (n = 101), for up to 5 consecutive months. In volunteers completing follow-up (96 tafenoquine and 91 placebo recipients), there were 22 P. vivax, 8 P. falciparum, and 1 mixed infection. All infections except 1 P. vivax occurred in placebo recipients, giving tafenoquine a protective efficacy of 97% for all malaria (95% confidence interval [CI], 82%-99%), 96% for P. vivax malaria (95% CI, 76%-99%), and 100% for P. falciparum malaria ( 95% CI, 60%-100%). Monthly tafenoquine was safe, well tolerated, and highly effective in preventing P. vivax and multidrug-resistant P. falciparum malaria in Thai soldiers during 6 months of prophylaxis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a novel intracellular protein with similar to 50% protein identity to adenosyl homocysteine hydrolase (AHCY), an important enzyme for metabolizing S-adenosyl-L-homocysteine, the by-product of S-adenosyl-L-homomethionine-dependent methylation. AHCYL1 binds to the inositol 1,4,5-trisphosphate receptor, suggesting that AHCYL1 is involved in intracellular calcium release. We identified two zebrafish AHCYL1 orthologs(zAHCYL1A and -B) by bioinformatics and reverse transcription-PCR. Unlike the ubiquitously present AHCY genes, AHCYL1 genes were only detected in segmented animals, and AHCYL1 proteins were highly conserved among species. Phylogenic analysis suggested that the AHCYL1 gene diverged early from AHCY and evolved independently. Quantitative reverse transcription-PCR showed that zAHCYL1A and -B mRNA expression was regulated differently from the other AHCY-like protein zAHCYL2 and zAHCY during zebrafish embryogenesis. Injection of morpholino antisense oligonucleotides against zAHCYL1A and -B into zebrafish embryos inhibited zAHCYL1A and -B mRNA translation specifically and induced ventralized morphologies. Conversely, human and zebrafish AHCYL1A mRNA injection into zebrafish embryos induced dorsalized morphologies that were similar to those obtained by depleting intracellular calcium with thapsigargin. Human AHCY mRNA injection showed little effect on the embryos. These data suggest that AHCYL1 has a different function from AHCY and plays an important role in embryogenesis by modulating inositol 1,4,5-trisphosphate receptor function for the intracellular calcium release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigenic variation in Plasmodium falciparum erythrocyte membrane protein 1, caused by a switch in transcription of the encoding var gene, is an important feature of malaria. In this study, we quantified the relative abundance of var gene transcripts present in P. falciparum parasite clones using real-time reverse transcription-polymerase chain reaction (RT-PCR) and conventional RT-PCR combined with cloning and sequencing, with the aim of directly comparing the results obtained. When there was sufficient abundance of RNA for the real-time RT-PCR assay to be operating within the region of good reproducibility, RT-PCR and real-time RT-PCR tended to identify the same dominant transcript, although some transcript-specific issues were identified. When there were differences in the estimated relative amounts of minor transcripts, the RT-PCR assay tended to produce higher estimates than real-time RT-PCR. These results provide valuable information comparing RT-PCR and real-time RT-PCR analysis of samples with small quantities of RNA as might be expected in the analysis of field or clinical samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multicopy var gene family encoding the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 is highly diverse, with little overlap between different P. falciparum isolates. We report 5 var genes (varS1-varS5) that are shared at relatively high frequency among 63 genetically diverse P. falciparum isolates collected from 5 islands in the West Pacific region. The varS1, varS2, and varS3 genes were localized to the internal region on chromosome 4, similar to 200 kb from pfdhfr-ts, whereas varS4 and varS5 were mapped to an internal region of chromosome 7, within 100 kb of pfcrt. The presence of varS2 and varS3 were significantly correlated with the pyrimethamine-resistant pfdhfr genotype, whereas varS4 was strongly correlated with the chloroquine-resistant pfcrt genotype. Thus, the conservation of these var genes is the result of their physical linkage with drug-resistant genes in combination with the antimalarial drug pressure in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.